Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 31, 2015
Previous Article Next Article

Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction

Author affiliations

Abstract

Design and synthesis of efficient noble metal-free hydrogen evolution catalysts is of paramount importance for the practical application of water-splitting devices. Herein, we report a novel synthetic method to grow dispersed molybdenum carbide (Mo2C) micro-islands on flexible carbon cloth (CC). This method involves the controlled synthesis of a supramolecular hybrid between cetyltrimethyl ammonium cations and molybdate anions on CC, followed by simple thermal treatment of this supramolecular hybrid in Ar to form Mo2C on CC in situ. In this synthesis, the presence of cetyltrimethyl ammonium bromide is proven to be important because it effectively immobilizes molybdate ions on CC on the one hand and functions as a carbon source for the formation of Mo2C on the other. Moreover, the as-prepared Mo2C/CC composite material can serve as efficient binder-free cathodes toward the hydrogen evolution reaction (HER). The Mo2C/CC affords a current density of 10 mA cm−2 at a low overpotential of 140 mV and works stably in acidic media with a Faraday yield of ∼100%. The isolated island architecture of Mo2C ensures rich active sites to be exposed and allows the easy interaction of reactants (e.g., protons) with the active sites. Also, the strong adhesion between Mo2C and carbon cloth facilitates electron transport/transfer in the composite material and is helpful for the achievement of excellent catalytic stability.

Graphical abstract: Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction

Back to tab navigation

Supplementary files

Article information


Submitted
13 May 2015
Accepted
06 Jul 2015
First published
07 Jul 2015

J. Mater. Chem. A, 2015,3, 16320-16326
Article type
Paper

Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction

M. Fan, H. Chen, Y. Wu, L. Feng, Y. Liu, G. Li and X. Zou, J. Mater. Chem. A, 2015, 3, 16320
DOI: 10.1039/C5TA03500G

Social activity

Search articles by author

Spotlight

Advertisements