Issue 29, 2015

Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

Abstract

In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7-di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic changes in morphology and device performance. Fullerenes affect device efficiency by changing the active layer morphology. PC70BM with broader absorption than PC60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created a higher density of traps. However after adding additive 1,8-diiodooctane (DIO), a fibrous morphology was observed due to the reduced solubility of the polymer and increased solubility of PC70BM in chloroform. The fibrous morphology improved charge transport leading to an increase in overall device performance. Atomic force microscopy (AFM), photo-induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin probe force microscopy (KPFM) were used to investigate the nanoscale morphology of the active layer with different fullerene derivatives. For the PC60BM based active layer, AFM images revealed a dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC70BM based active layer only exhibited an intermixed granular morphology instead of a fibrous morphology observed in the PC60BM based active layer. However, addition of DIO into the PC70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC70BM than the PC60BM based active layer by KPFM measurements, indicating that polymer and fullerene domains are separated. When DIO was used, a narrower distribution of surface potential for both PC70BM and PC60BM based active layers was observed. Photo-CELIV experiments showed larger extracted charge carrier density and mobility in the PC70BM/DIO film.

Graphical abstract: Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2015
Accepted
13 Jun 2015
First published
03 Jul 2015

J. Mater. Chem. A, 2015,3, 15307-15313

Author version available

Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

D. Khatiwada, S. Venkatesan, Q. Chen, J. Chen, N. Adhikari, A. Dubey, A. F. Mitul, L. Mohammed and Q. Qiao, J. Mater. Chem. A, 2015, 3, 15307 DOI: 10.1039/C5TA02709H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements