Issue 19, 2015

A polyimide based all-organic sodium ion battery

Abstract

Developing new approaches to improve the performance of organic electrodes for rechargeable sodium batteries is important. Here, we report studies on N,N′-diamino-3,4,9,10-perylenetetracarboxylic polyimide (PI) as a novel cathode for a sodium battery and demonstrate an all-organic sodium ion battery using this polyimide as the cathode and disodium terephthalate (NaTP) (pre-sodiated) as the anode. The synthesised PI exhibits excellent electrochemical properties, when studied as the cathode for sodium batteries, with a reversible capacity of 126 mA h g−1 along with good capacity retention and rate capability, in the voltage range of 1.5 to 3.5 V vs. Na+/Na. The all-organic sodium ion full cell delivered an initial capacity of 73 mA h g−1, with an average cell voltage of 1.35 V. The attractive electrochemical performance combined with the design flexibility of a PTCDA based PI material, offer new possibilities for the development of efficient all-organic sodium ion batteries.

Graphical abstract: A polyimide based all-organic sodium ion battery

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2015
Accepted
07 Apr 2015
First published
07 Apr 2015

J. Mater. Chem. A, 2015,3, 10453-10458

A polyimide based all-organic sodium ion battery

H. Banda, D. Damien, K. Nagarajan, M. Hariharan and M. M. Shaijumon, J. Mater. Chem. A, 2015, 3, 10453 DOI: 10.1039/C5TA02043C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements