Issue 19, 2015

The effect of interstitial oxygen formation on the crystal lattice deformation in layered perovskite oxides for electrochemical devices

Abstract

In order to understand the behaviour of the crystal lattice deformation induced by the interstitial oxygen formation in La2(Ni0.9M0.1)O4+δ (M = Fe, Co, and Cu), thermogravimetry, coulometric titration, and high temperature X-ray diffraction measurements were carried out in the temperature range between 873 and 1173 K and the P(O2) range between 10−24 and 1 bar. Compared with non-doped La2NiO4+δ, La2(Ni0.9Fe0.1)O4+δ and La2(Ni0.9Co0.1)O4+δ have more interstitial oxygen while La2(Ni0.9Cu0.1)O4+δ has less. The crystal structure at high temperatures was analyzed assuming the tetragonal symmetry, I4/mmm, for all compositions. With increasing interstitial oxygen concentration, the lattice parameter perpendicular to the perovskite layer increased and that parallel to the perovskite layer decreased. Consequently, the change of the cell volume by the interstitial oxygen formation was small, meaning that macroscopic chemical expansion was small. Chemical and thermal deformation behaviour could be explained by assuming a linear relation of the lattice constants to T and δ. Apparent and true thermal expansion coefficients and chemical expansion coefficient were calculated and compared with oxygen deficient perovskite- and fluorite-type oxides. It was found that the chemical expansion coefficients of La2NiO4-based oxides which are induced by the formation/annihilation of interstitial oxygen are smaller than those of perovskite- and fluorite-type oxides which are induced by the formation/annihilation of oxygen vacancies.

Graphical abstract: The effect of interstitial oxygen formation on the crystal lattice deformation in layered perovskite oxides for electrochemical devices

Article information

Article type
Paper
Submitted
26 Feb 2015
Accepted
05 Apr 2015
First published
08 Apr 2015

J. Mater. Chem. A, 2015,3, 10471-10479

Author version available

The effect of interstitial oxygen formation on the crystal lattice deformation in layered perovskite oxides for electrochemical devices

T. Nakamura, Y. Ling and K. Amezawa, J. Mater. Chem. A, 2015, 3, 10471 DOI: 10.1039/C5TA01504A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements