Jump to main content
Jump to site search

Issue 25, 2015
Previous Article Next Article

Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3NixCu1−xO4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs

Author affiliations

Abstract

Hierarchically nanoporous materials based on layered perovskite oxides La1.7Ca0.3NixCu1−xO4−δ (x = 0, 0.25, 0.50 or 0.75) have been synthesized by a facile citrate-modified evaporation-induced self-assembly (EISA) method. These La1.7Ca0.3NixCu1−xO4−δ oxides have been evaluated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) with Ni–YSZ cermet supported type cells. It was found that La1.7Ca0.3CuO4−δ cathode exhibits the maximum power density at high temperature (e.g., 1.5 W cm−2 at 850 °C), while La1.7Ca0.3Ni0.75Cu0.25O4−δ cathode shows the highest power density at intermediate temperature (e.g. 0.71 W cm−2 at 750 °C) using humidified H2 and air as the fuel and oxidant, respectively. The electrochemical performance of single cells with La1.7Ca0.3Ni0.75Cu0.25O4−δ cathode materials with different morphologies demonstrated better performance in the intermediate temperature range when using the cathode prepared by the citrate-modified EISA method, which has a bigger grain size, but with higher surface area and pore volumes.

Graphical abstract: Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3NixCu1−xO4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Feb 2015, accepted on 27 May 2015 and first published on 28 May 2015


Article type: Paper
DOI: 10.1039/C5TA00983A
Author version
available:
Download author version (PDF)
J. Mater. Chem. A, 2015,3, 13468-13475
  • Open access: Creative Commons BY license
  •   Request permissions

    Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3NixCu1−xO4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs

    X. Huang, T. H. Shin, J. Zhou and J. T. S. Irvine, J. Mater. Chem. A, 2015, 3, 13468
    DOI: 10.1039/C5TA00983A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements