Issue 21, 2015

A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium–sulfur batteries

Abstract

To better suppress the capacity decay over cycling and improve the electrical insulation of the sulfur cathode for lithium–sulfur (Li–S) batteries, we designed a novel three-dimensional nanostructure of graphene interconnected with hollow carbon spheres (3D rGO–HCS) as the sulfur host. The 3D rGO–HCS nanostructure was first prepared via a hydrothermal self-assembly method followed by carbonization and etching of the SiO2 core, then sulfur was impregnated into the nanostructure by an in situ solution deposition method to obtain the S@rGO–HCS cathode. The as-prepared cathode material delivers a high discharge capacity of ∼770 mA h g−1 at 4 C rate. More importantly, it has a high capacity retention of 93.9% after 100 cycles and demonstrates a low capacity-decay rate of 0.052% per cycle after 400 cycles at 0.5 C rate. The superior comprehensive electrochemical performance of the S@rGO–HCS cathode is ascribed to the synergic effects from the 3D graphene-network design, including fast electron and ion transportation, efficient confinement of polysulfide dissolution and shuttling and successful maintenance of structural integrity.

Graphical abstract: A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium–sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2015
Accepted
16 Apr 2015
First published
01 May 2015

J. Mater. Chem. A, 2015,3, 11395-11402

Author version available

A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium–sulfur batteries

S. Liu, K. Xie, Z. Chen, Y. Li, X. Hong, J. Xu, L. Zhou, J. Yuan and C. Zheng, J. Mater. Chem. A, 2015, 3, 11395 DOI: 10.1039/C5TA00897B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements