Issue 15, 2015

Synthesis of cross-linked amides and esters as thin film composite membrane materials yields permeable and selective material for water vapor/gas separation

Abstract

In this work, 3,5-diaminobenzoic acid (BA) was selected to synthesize polyamide as a selective layer because it is considered desirable to fabricate hydrophilic thin film composite (TFC) membranes for water vapor separation. Cross-linked chains of TFC membranes by interfacial polymerization were suggested, confirmed and discussed by using the compiled results of characterization, such as ATR-FTIR, XPS, FE-SEM, BET surface area, TGA and water contact angle. As a result, the BA-1-10 membrane (1.0 wt% of BA, 0.2 wt% of TMC and 10 min of reaction time) showed the best permeance and separation factor as 2160 GPU and 23, respectively, compared with other TFC membranes prepared under different conditions. It was shown that with a higher concentration of BA containing carboxylic acid a faster diffusion, greater reactivity and the formation of hydrophobic esters are possible. Moreover, the acyl chloride group (–COCl) of TMC was hydrolyzed to COOH and improved the hydrophilicity for a better sorption of water vapor. However, the hydrophobic esters were generated on a selective layer due to the excessive reaction time over 10 min. It was found that the reaction time should be the same as the immersion time of the aqueous monomer to give adequate high performances.

Graphical abstract: Synthesis of cross-linked amides and esters as thin film composite membrane materials yields permeable and selective material for water vapor/gas separation

Supplementary files

Article information

Article type
Paper
Submitted
28 Jan 2015
Accepted
03 Mar 2015
First published
03 Mar 2015

J. Mater. Chem. A, 2015,3, 7888-7899

Author version available

Synthesis of cross-linked amides and esters as thin film composite membrane materials yields permeable and selective material for water vapor/gas separation

S. H. Yun, P. G. Ingole, W. K. Choi, J. H. Kim and H. K. Lee, J. Mater. Chem. A, 2015, 3, 7888 DOI: 10.1039/C5TA00706B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements