Issue 7, 2015

A redox mediator doped gel polymer as an electrolyte and separator for a high performance solid state supercapacitor

Abstract

A stable and effective redox-mediator gel electrolyte has been prepared by doping indigo carmine (IC) into a polyvinyl alcohol sulfuric acid polymer system (PVA–H2SO4), and a high performance solid state supercapacitor is fabricated by utilizing activated carbon as electrodes and the prepared gel polymer (PVA–H2SO4–IC) as an electrolyte and separator. The PVA–H2SO4–IC gel polymer has excellent bending, compressing and stretching mechanical properties. As expected, the ionic conductivity of the gel polymer electrolyte increased by 188% up to 20.27 mS cm−1 while introducing IC as the redox mediator in the PVA–H2SO4 gel electrolyte. Simultaneously, specific capacitance is increased by 112.2% (382 F g−1) and energy density (13.26 W h kg−1) is also increased. Furthermore, the fabricated device shows superior charge–discharge stability. After 3000 cycles, its capacitive retention ratio is still as high as 80.3%. This result may be due to the fact that the IC can act as a plasticizer and redox mediator, and the supercapacitor combines the double-layer characteristic of carbon-based supercapacitors and the faradaic reaction characteristic of batteries energy-storage processes.

Graphical abstract: A redox mediator doped gel polymer as an electrolyte and separator for a high performance solid state supercapacitor

Article information

Article type
Paper
Submitted
20 Nov 2014
Accepted
06 Jan 2015
First published
06 Jan 2015

J. Mater. Chem. A, 2015,3, 4035-4041

Author version available

A redox mediator doped gel polymer as an electrolyte and separator for a high performance solid state supercapacitor

G. Ma, M. Dong, K. Sun, E. Feng, H. Peng and Z. Lei, J. Mater. Chem. A, 2015, 3, 4035 DOI: 10.1039/C4TA06322H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements