Jump to main content
Jump to site search

Issue 9, 2015
Previous Article Next Article

Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties

Author affiliations

Abstract

The intermolecular interactions between the “polymer of intrinsic microporosity” PIM-1 and polycyclic aromatic hydrocarbons (PAHs) have been investigated with the aim of modifying the gas sorption and physical properties. Mixing PIM-1 with selected PAHs resulted in rapid precipitation of polymer. Blending PIM-1 with pyrene had a significant effect of the gas sorption properties of the resulting films; dramatically reduced N2 uptake (77 K), whilst CO2 uptake at 298 K was only slightly reduced. A gate-opening behaviour was also observed for the N2 gas sorption (77 K), which was related to the pyrene content of the blend. Using an electron-donating PAH as the additive resulted in a stronger interaction. By exploiting a post-modification strategy after PIM-1 film formation, the absorption of either pyrene or 1-aminopyrene produced films with higher elastic moduli and greatly improved CO2/N2 gas sorption selectivities (293 K). Single gas permeability measurements revealed that while the 1-aminopyrene modified film possessed reduced CO2 permeability, it possessed enhanced CO2/N2 selectivity. Importantly, the ageing of the permeability was halted over the 50 days tested, likely due to the physical crosslinking of the polymer chains by 1-aminopyrene.

Graphical abstract: Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Nov 2014, accepted on 23 Jan 2015 and first published on 26 Jan 2015


Article type: Paper
DOI: 10.1039/C4TA06070A
Author version
available:
Download author version (PDF)
Citation: J. Mater. Chem. A, 2015,3, 4855-4864
  • Open access: Creative Commons BY license
  •   Request permissions

    Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties

    T. O. McDonald, R. Akhtar, C. H. Lau, T. Ratvijitvech, G. Cheng, R. Clowes, D. J. Adams, T. Hasell and A. I. Cooper, J. Mater. Chem. A, 2015, 3, 4855
    DOI: 10.1039/C4TA06070A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements