Issue 47, 2015

New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core–shell particles

Abstract

Icing is an important problem, which often leads to emergency situations in northern countries. The reduction of icing requires a detailed understanding of this process. In this work, we report on a systematic investigation of the effects of geometry and chemical properties of surfaces on the formation of an ice layer, its properties, and thawing. We compare in detail icing and ice thawing on flat and rough hydrophilic and hydrophobic surfaces. We also show advantages and disadvantages of the surfaces of each kind. We demonstrate that water condenses in a liquid form, leading to the formation of a thin continuous water layer on a hydrophilic surface. Meanwhile, separated rounded water droplets are formed on hydrophobic surfaces. As a result of slower heat exchange, the freezing of rounded water droplets on a hydrophobic surface occurs later than the freezing of the continuous water layer on a hydrophilic one. Moreover, growth of ice on hydrophobic surfaces is slower than on the hydrophilic ones, because ice grows due to the condensation of water vapor on already formed ice crystals, and not due to the condensation on the polymer surface. Rough hydrophobic surfaces also demonstrate a very low ice adhesion value, which is because of the reduced contact area with ice. The main disadvantage of hydrophobic and superhydrophobic surfaces is the pinning of water droplets on them after thawing. Flat hydrophilic poly(ethylene glycol)-modified surfaces also exhibit very low ice adhesion, which is due to the very low freezing point of the water–poly(ethylene glycol) mixtures. Water easily leaves from flat hydrophilic poly(ethylene glycol)-modified surfaces, and they quickly become dry. However, the ice growth rate on poly(ethylene glycol)-modified hydrophilic surfaces is the highest. These results indicate that neither purely (super)hydrophobic polymeric surfaces, nor “antifreeze” hydrophilic ones provide an ideal solution to the problem of icing.

Graphical abstract: New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core–shell particles

Supplementary files

Article information

Article type
Paper
Submitted
25 Aug 2015
Accepted
14 Sep 2015
First published
15 Sep 2015

Soft Matter, 2015,11, 9126-9134

New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core–shell particles

J. Chanda, L. Ionov, A. Kirillova and A. Synytska, Soft Matter, 2015, 11, 9126 DOI: 10.1039/C5SM02143J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements