Issue 30, 2015

Self-healing hydrogels containing reversible oxime crosslinks

Abstract

Self-healing oxime-functional hydrogels have been developed that undergo a reversible gel-to-sol transition via oxime exchange under acidic conditions. Keto-functional copolymers were prepared by conventional radical polymerization of N,N-dimethylacrylamide (DMA) and diacetone acrylamide (DAA). The resulting water soluble copolymers (P(DMA-stat-DAA)) were chemically crosslinked with difunctional alkoxyamines to obtain hydrogels via oxime formation. Gel-to-sol transitions were induced by the addition of excess monofunctional alkoxyamines to promote competitive oxime exchange under acidic conditions at 25 °C. The hydrogel could autonomously heal after it was damaged due to the dynamic nature of the oxime crosslinks. In addition to their chemo-responsive behavior, the P(DMA-stat-DAA) copolymers exhibit cloud points which vary with the DAA content in the copolymers. This thermo-responsive behavior of the P(DMA-stat-DAA) was utilized to form physical hydrogels above their cloud point. Therefore, these materials can either form dynamic-covalent or physically-crosslinked gels, both of which demonstrate reversible gelation behavior.

Graphical abstract: Self-healing hydrogels containing reversible oxime crosslinks

Supplementary files

Article information

Article type
Paper
Submitted
13 Apr 2015
Accepted
23 Jun 2015
First published
06 Jul 2015

Soft Matter, 2015,11, 6152-6161

Author version available

Self-healing hydrogels containing reversible oxime crosslinks

S. Mukherjee, M. R. Hill and B. S. Sumerlin, Soft Matter, 2015, 11, 6152 DOI: 10.1039/C5SM00865D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements