Issue 6, 2015

Structural determinants in a library of low molecular weight gelators

Abstract

Low molecular weight hydrogels are formed by molecules that form a matrix that immobilises water to form a self-supporting gel. Such gels have uses as biomaterials such as molecular scaffolds and structures for tissue engineering. One class of low molecular weight gelator (LMWG), naphthalene-conjugated dipeptides, has been shown to form hydrogels via self-assembly following a controlled drop in pH. A library of naphthalene-dipeptides has been generated previously although the relationship between the precursor sequence and the resulting self-assembled structures remained unclear. Here, we have investigated the structural details of a set of dipeptide sequences containing alanine (A) and valine (V) conjugated to naphthalene groups substituted with a Br, CN or H at the 6-position. Electron microscopy, circular dichroism and X-ray fibre diffraction shows that these LMWG may be structurally classified by their composition: the molecular packing is determined by the class of conjugate, whilst the chirality of the self-assemblies can be attributed to the dipeptide sequence. This provides insights into the relationship between the precursor sequence and the macromolecular and molecular structures of the fibres that make up the resulting hydrogels.

Graphical abstract: Structural determinants in a library of low molecular weight gelators

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2014
Accepted
17 Dec 2014
First published
17 Dec 2014

Soft Matter, 2015,11, 1174-1181

Author version available

Structural determinants in a library of low molecular weight gelators

K. L. Morris, L. Chen, A. Rodger, D. J. Adams and L. C. Serpell, Soft Matter, 2015, 11, 1174 DOI: 10.1039/C4SM02532F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements