Issue 2, 2015

Grade 12 students' conceptual understanding and mental models of galvanic cells before and after learning by using small-scale experiments in conjunction with a model kit

Abstract

This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The research tools consisted of (1) four small-scale experiments involving electrochemistry, which were oxidation and reduction reactions, galvanic cells, cathodic protection of iron nails, and connecting batteries in series, and (2) the galvanic cell model kit with the ability to generate various galvanic cells. The data collecting tools included (1) a conceptual test of electrochemistry and (2) the mental model drawing of a galvanic cell. Thirty-four grade 12 students participated in the series of four 5E learning activities for a total of 10 hours. Paired samples T-test analysis revealed that the mean scores of the post-conceptual test (mean 36.63, SD 7.69) was statistically higher than that of the pre-conceptual test (mean 21.51, SD 6.83) at the significance level of 0.05. In addition, the mean scores of the post-mental models in both the macroscopic (mean 3.56, SD 1.30) and sub-microscopic features (mean 5.98, SD 2.93) were statistically higher than those of the pre-mental models (mean 1.85, SD 1.11 and mean 2.20, SD 2.45) at the significance level of 0.05. Prior to intervention, most students were in the categories of less correct conceptions, Partial Understanding with Specific Misunderstanding (PMU) to No Understanding (NU). However, after the intervention, they moved to the categories of more correct conceptions, Partial Understanding (PU) to Sound Understanding (SU). This indicated that this intervention can enhance students' conceptual understanding of electrochemistry and mental models of galvanic cells.

Article information

Article type
Paper
Submitted
29 Nov 2014
Accepted
13 Mar 2015
First published
13 Mar 2015

Chem. Educ. Res. Pract., 2015,16, 393-407

Author version available

Grade 12 students' conceptual understanding and mental models of galvanic cells before and after learning by using small-scale experiments in conjunction with a model kit

S. Supasorn, Chem. Educ. Res. Pract., 2015, 16, 393 DOI: 10.1039/C4RP00247D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements