Issue 128, 2015

Radiosynthesis and evaluation of N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(4-fluorophenyl)thiazol-2-yl]-1-[11C]carboxamide for in vivo positron emission tomography imaging of fatty acid amide hydrolase in brain

Abstract

We developed a novel positron emission tomography (PET) radiotracer N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(4-fluorophenyl)thiazol-2-yl]-1-[11C]carboxamide ([11C]DPFC, [11C]1) for in vivo imaging of fatty acid amide hydrolase (FAAH) in rat brain. Compound 1 showed a high binding affinity for FAAH (IC50: 3.3 nM). [11C]1 was synthesized by reaction of 5-amino-3,4-dimethylisoxazole (2) with [11C]phosgene ([11C]COCl2), followed by reaction with 4-(4-fluorophenyl)-2-(piperazin-1-yl)thiazole (3), with a 9 ± 4% radiochemical yield (decay-corrected, n = 9) based on [11C]CO2. A biodistribution study in mice showed a high uptake of radioactivity in FAAH-rich organs, including the lung, liver, and kidney. PET summation images of rat brains showed high radioactivity (>2 SUV) in the cerebellar nuclei and frontal cortex. This pattern was consistent with the known regional distribution pattern of FAAH in the rodent brain. Pretreatment with the FAAH-selective inhibitor URB597 significantly reduced the whole brain uptake of [11C]1. At 30 min after the radiotracer injection, more than 95% of the total radioactivity was found to be irreversible in the brain homogenate of rats. Our results indicate that [11C]1 is a promising PET tracer for in vivo visualization of FAAH in living brains.

Graphical abstract: Radiosynthesis and evaluation of N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(4-fluorophenyl)thiazol-2-yl]-1-[11C]carboxamide for in vivo positron emission tomography imaging of fatty acid amide hydrolase in brain

Article information

Article type
Paper
Submitted
27 Oct 2015
Accepted
01 Dec 2015
First published
03 Dec 2015

RSC Adv., 2015,5, 106122-106127

Author version available

Radiosynthesis and evaluation of N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(4-fluorophenyl)thiazol-2-yl]-1-[11C]carboxamide for in vivo positron emission tomography imaging of fatty acid amide hydrolase in brain

Y. Shimoda, J. Yui, Y. Zhang, A. Hatori, M. Ogawa, M. Fujinaga, T. Yamasaki, L. Xie, K. Kumata and M.-R. Zhang, RSC Adv., 2015, 5, 106122 DOI: 10.1039/C5RA22500K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements