Substitution effect on the photochromic properties of benzo[b]thiophene-1,1-dioxide based diarylethenes†
Abstract
Benzo[b]thiophene-1,1-dioxide based diarylethenes (DAEs), BTT-1 to BTT-4, containing methyl, phenyl, formyl and triphenylamine groups at the 5,5′-position of the thiophene rings have been developed for gaining an insight into the substituent effect on the absorption and photochromic properties. Electron-donating substituents, such as phenyl and triphenylamine groups, are found to be effective at shifting the absorption band to a longer wavelength and decreasing the cyclization quantum yield. The electron-withdrawing formyl group can increase the cyclization quantum yield, but it reduces the thermal stability of the ring-closed isomer to some extent. BTT-4 bearing a triphenylamine group shows the poorest fatigue resistance among these four compounds, which is possibly due to the larger extended π-conjugation length in the ring-closed isomer. BTT-2 bearing a phenyl unit undergoes typical photochromic reaction not only in solution, but also in PMMA thin film and in bulky crystals with excellent fatigue resistance and thermal stability.