Issue 94, 2015

From supramolecular hydrogels to functional aerogels: a facile strategy to fabricate Fe3O4/N-doped graphene composites

Abstract

This manuscript introduces a simple method to fabricate hybrid aerogels with Fe3O4 nanocrystals/nitrogen-doped graphene (Fe3O4/N-GAs) through one-shot self-mineralization of ferrocenoyl phenylalanine/graphene oxide (Fc-F/GO) supramolecular hydrogels. We found that GO could trigger a sol–gel transition of Fc-F gelators below the critical gelation concentration and the electron microscopic results revealed that the self-assembled Fc-F fibrils tightly bound onto graphene sheets. Upon hydrothermal reaction, Fc moieties in these fibrils could be locally oxidized to Fe3O4 nanocrystals by GO, remaining on the top of reduced GO (RGO) sheets and therefore inhibiting the self-aggregation of graphene nanosheets. After drying, the remains of the supramolecular hybrid hydrogels are presented as the three-dimensional (3D) framework of ultra-thin graphene sheets on which Fe3O4 nanoparticles (NPs) are uniformly immobilized as single crystals. Since the new born Fe3O4 nanocrystals are closely anchored on the graphene sheets, the as-prepared Fe3O4/N-GAs complex shows excellent electrocatalytic activity for the oxygen reduction reaction (ORR, compared to commercial Pt/C). Notably, the Fc-F/GO supramolecular hydrogels act as multifunctional reagents, such as capping agents for preventing graphene nanosheets from stacking and Fe and N sources for Fe3O4/N-GAs. We expect that this intriguing strategy can provide a useful archetypical example in designing nonprecious metal oxides/carbon hybrid materials to serve as substitutes for noble metal catalysts.

Graphical abstract: From supramolecular hydrogels to functional aerogels: a facile strategy to fabricate Fe3O4/N-doped graphene composites

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2015
Accepted
04 Sep 2015
First published
07 Sep 2015

RSC Adv., 2015,5, 77296-77302

Author version available

From supramolecular hydrogels to functional aerogels: a facile strategy to fabricate Fe3O4/N-doped graphene composites

T. He, Z. Li, Z. Sun, S. Chen, R. Shen, L. Yi, L. Deng, M. Yang, H. Liu and Y. Zhang, RSC Adv., 2015, 5, 77296 DOI: 10.1039/C5RA15595A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements