Issue 94, 2015

Fabrication and properties of hybrid Mo-CPF/P1B from cardanol

Abstract

A Mo-CPF/P1B hybrid has been prepared from molybdenum modified cardanol phenolic resin (Mo-CPF) and cardanol benzoxazine with phosphorus (P1B). Cardanol benzoxazine with phosphorus (P1B) has been synthesized from cardanol-allylamine-based benzoxazine (BZc-a) and DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide). Cardanol phenolic resin modified with molybdenum (Mo-CPF) has been synthesized by reacting cardanol-based phenolic resin (CPF) with ammonium molybdate tetrahydrate at 150 °C, where the CPF was synthesized from cardanol and paraformaldehyde in the presence of sodium hydroxide at 65 °C. The synthesized CPF and Mo-CPF were characterized by 1H-NMR and size exclusion chromatography (SEC). Mo-CPF was mixed with P1B, and the mixtures were cured at 110 °C for 4 h and got the Mo-CPF/P1B hybrid. The properties of the Mo-CPF/P1B hybrid were investigated; the results demonstrated that the mechanical and thermal properties, together with flame retardance, were greatly improved. Dynamic Mechanical Analysis (DMA) measurement results indicated that CPF, Mo-CPF and Mo-CPF/P1B could all sustain a large amount of stress and the elongations at break were different. DMA measurements suggested that the Tg of CPF, Mo-CPF and Mo-CPF/P1B was 98 °C, 170 °C and 131 °C respectively. Mo-CPF/P1B exhibited better flame retardance after conjugating with molybdenum and phosphorus. TGA results suggested that Mo-CPF/P1B exhibited better thermal properties. Field emission electron microscopy (FE-SEM) suggested that molybdenum was randomly distributed in Mo-CPF and Mo-CPF/P1B, and EDX indicated that molybdenum and phosphorus were randomly distributed in Mo-CPF/P1B.

Graphical abstract: Fabrication and properties of hybrid Mo-CPF/P1B from cardanol

Article information

Article type
Paper
Submitted
28 May 2015
Accepted
24 Aug 2015
First published
26 Aug 2015

RSC Adv., 2015,5, 77429-77436

Author version available

Fabrication and properties of hybrid Mo-CPF/P1B from cardanol

G. Xu, T. Shi, Y. Xiang, W. Yuan and Q. Wang, RSC Adv., 2015, 5, 77429 DOI: 10.1039/C5RA10083F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements