Synergistic lithium storage of a multi-component Co2SnO4/Co3O4/Al2O3/C composite from a single-source precursor†
Abstract
Endowing multi-component anode nanomaterials for lithium-ion batteries (LIBs) with integrated features for synergistically enhancing electrochemical performance is challenging via a simple preparation method. We herein describe an easy approach for preparing a multi-component Co2SnO4/Co3O4/Al2O3/C composite as the anode nanomaterial for LIBs, derived from a laurate anion-intercalated CoAlSn-layered double hydroxide (CoAlSn-LDH) single-source precursor. The resultant Co2SnO4/Co3O4/Al2O3/C electrode delivers a highly enhanced reversible capacity of 1170 mA h g−1 at 100 mA g−1 after 100 cycles, compared with the bi-active composites designed without Al2O3 or carbon (Co2SnO4/Co3O4/C, Co2SnO4/Co3O4/Al2O3, and Co2SnO4/Co3O4) which are easily derived through the same protocol by choosing LDH precursors without Al cation or surfactant intercalation. The distinctly different cycling stability and rate capability of Co2SnO4/Co3O4/Al2O3/C among the different composite electrodes suggest that the high enhancement could result from the following synergistic features: the combined conversion and alloying reactions of bi-active Co2SnO4/Co3O4 during cycling, the buffering role of non-active Al2O3 and carbon, and the improved conductivity of the self-generated carbon matrix. The LDH precursor-based approach may be extended to the design and preparation of various multi-component transition metal oxide composite nanomaterials for synergistic lithium storage.