Issue 83, 2015

Toxicity of layered semiconductor chalcogenides: beware of interferences

Abstract

The absence of bandgap in graphene has opened exploration in a new class of 2D nanomaterials: layered semiconductor chalcogenides. Research has found that they have promising properties which are advantageous for applications in a wide range of fields such as solar energy conversion, field effect transistors, optoelectronic devices, energy storage, and is expanding into biomedical applications. However, little is known about their toxicity effects. In view of the possibility of employing these materials into consumer products, we investigated the cytotoxicity of two common layered semiconductor chalcogenides, namely GaSe and GeS, based on cell viability assessments using water-soluble tetrazolium salt (WST-8) and methyl-thiazolyldiphenyl-tetrazolium bromide (MTT) assays after a 24 h exposure to varying concentrations of the nanomaterials on human lung carcinoma epithelial cells (A549). The cytotoxicity results indicated that GaSe is relatively more toxic than another group of 2D layered chalcogenide: transition metal dichalcogenides (MoS2, WS2, WSe2). On the other hand, GeS appeared to be non-toxic, with the concentration of GeS introduced having a positive correlation with the cell viability. Control experiments in cell-free conditions revealed that both GaSe and GeS interfered with the absorbance data gathered in the two assays, but the interference effect induced by GaSe could be minimized by additional washing steps to remove the nanomaterials prior to the cell viability assessments. In the case of GeS, however, the interference effect between GeS and both assay dyes were still significant despite the washing steps adopted, thereby giving rise to the false cytotoxicity results observed for GeS. Therein, we wish to highlight that control experiments should always be carried out to check for any possible interferences between the test specimen and cell viability markers when conducting cell viability assessments for cytotoxicity studies.

Graphical abstract: Toxicity of layered semiconductor chalcogenides: beware of interferences

Article information

Article type
Paper
Submitted
19 May 2015
Accepted
30 Jul 2015
First published
06 Aug 2015

RSC Adv., 2015,5, 67485-67492

Author version available

Toxicity of layered semiconductor chalcogenides: beware of interferences

N. Latiff, W. Z. Teo, Z. Sofer, Š. Huber, A. C. Fisher and M. Pumera, RSC Adv., 2015, 5, 67485 DOI: 10.1039/C5RA09404F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements