Strain-induced metal-semimetal transition of BeB2 monolayer†
Abstract
The Dirac point and cones make some two-dimensional materials (e.g., graphene, silicone and graphyne) exhibit ballistic charge transport and enormously high carrier mobilities. Here, we present a novel semimetal with triangular lattice. Metallic BeB2 monolayer could transform to a semimetal with a Dirac point at the Fermi level when the lattice parameters are isotropically compressed by about 5%, while it becomes metallic again under larger compression. The Fermi velocity of semimetallic BeB2 monolayer is 0.857 × 106 m s−1, just a little smaller than that of graphene. Furthermore, it is found that uniaxial compressive strain opens a band gap in the BeB2 monolayer, while uniaxial tensile strain keeps it metallic. Our study expands the Dirac systems and provides new insight to explore novel semimetallic materials.
Please wait while we load your content...