Issue 6, 2015

Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas

Abstract

Hydrothermal synthesis is a well-suited approach for preparing bulk metal catalysts with high purity as it is cost-effective and easy to control in terms of temperature and time. In the current study, an effective catalyst for transesterification of high fatty acid content of crude Jatropha curcas oil (JCO) was appraised. Calcium methoxide (Ca(OCH3)2) has been successfully synthesized via a green and economical hydrothermal process at different synthesis times. CaO was used as a precursor as it is abundant, inexpensive and environmentally friendly. Ca(OCH3)2 can form on the surface of CaO and its active basic surface is very well developed. This facile experimental strategy without any surfactant or template produced porous Ca(OCH3)2 with a high surface area and high basicity, which leads to a superior catalytic reaction and is a promising alternative for short-reaction-time solid-based catalysts in biodiesel production in terms of excellent transesterification performance and long durability. The performance of synthesized Ca(OCH3)2 was examined by characterizing it using analytical techniques such as TG-DTA, XRD, BET, FT-IR, TEM and SEM. Ca(OCH3)2 catalysts had three types of morphologies, i.e. (a) irregular round shape particles, (b) a well arrangement of plate-like structures with rough surface and (c) a cluster of tiny plate-like architectures with smooth surfaces. The correlation between synthesis time, surface area and morphology of catalysts and the biodiesel yield was studied. Ca(OCH3)2 was able to maintain the FAME content above 86% after a fifth cycle, at optimum reaction conditions of 2 h reaction time, 12 : 1 methanol/oil molar ratio, 2 wt% catalyst loading and 65 °C reaction temperature. Ca(OCH3)2 is a solid heterogeneous catalyst for the transesterification reaction of non-edible Jatropha curcas oil for biodiesel production. The catalyst can be separated easily from the reaction mixture and reused to give a consistent transesterification activity.

Graphical abstract: Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas

Article information

Article type
Paper
Submitted
07 Oct 2014
Accepted
25 Nov 2014
First published
25 Nov 2014

RSC Adv., 2015,5, 4266-4276

Author version available

Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas

S. H. Teo, Y. H. Taufiq-Yap, U. Rashid and A. Islam, RSC Adv., 2015, 5, 4266 DOI: 10.1039/C4RA11936C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements