Issue 3, 2015

Temperature and concentration dependent fibrillogenesis for improved magnetic alignment of collagen gels

Abstract

Collagen fibrils form the structural basis for a broad range of complex biological tissues and materials. Collagen serves as an ideal natural polymer, formed as gels or matrices, for engineering solutions aimed at the regeneration of tissues following damage or disease. Recapitulation of native tissue hierarchical structure involves the careful consideration of the fibril-microstructure of the target tissue extracellular matrix and the choice of fibrillogenesis conditions that favor spatially-dependent fibril alignment. While magnetic fields non-destructively influence collagen fibrillogenesis and alignment, previous methods have demonstrated only limited control, especially when preparing large volume tissue constructs suitable for implantation. In this study, we investigate the use of temperature-controlled fibrillogenesis over a range of applicable collagen concentrations for improved magnetic alignment of polymerizable collagen-fibril gels. Magnetically aligned collagen gels show that bulk and microscale fibril alignment depend on both polymerization temperature and collagen concentration. The degree of fibril alignment at the microscale increased with decreasing polymerization temperature and collagen concentration. Further, computational simulations suggest that lower polymerization temperatures affect the internal gel temperature distribution and convective fluid velocity, potentially facilitating greater fibril alignment. This work demonstrates improvements in observed fibril anisotropy compared to previous work using similar magnetic field strengths, suggesting that temperature and collagen concentration may be utilized to achieve desired fibril alignment and structural properties. Improved control of collagen-based gel structure may better emulate native tissue structural (alignment) and physical properties, with enhanced potential for repair success in vivo.

Graphical abstract: Temperature and concentration dependent fibrillogenesis for improved magnetic alignment of collagen gels

Article information

Article type
Paper
Submitted
29 Sep 2014
Accepted
24 Nov 2014
First published
25 Nov 2014

RSC Adv., 2015,5, 2113-2121

Temperature and concentration dependent fibrillogenesis for improved magnetic alignment of collagen gels

G. S. Shannon, T. Novak, C. Mousoulis, S. L. Voytik-Harbin and C. P. Neu, RSC Adv., 2015, 5, 2113 DOI: 10.1039/C4RA11480A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements