Jump to main content
Jump to site search

Issue 2, 2015
Previous Article Next Article

Combining coordination and supramolecular chemistry to explore uranyl assembly in the solid state

Author affiliations

Abstract

The syntheses and crystal structures of twelve new compounds containing the UO22+ cation, a bromo-substituted benzoic acid linker (m-bromo-, p-bromo, or 3,5-dibromobenzoic acid) and a chelating N-donor (1,10-phenanthroline, 2,2′:6′,2′′-terpyridine, or 4′-chloro-2,2′:6′,2′′-terpyridine) are reported. Single crystal X-ray diffraction analyses of these materials allowed for the exploration of the structural relationship between the benzoic acids and the chelating N-donor, as well as the influence of pH on uranyl speciation. At an unadjusted pH (∼3) a mix of uranyl monomers and dimers are observed whereas at higher pH (5–6) uranyl dimers are usually produced with monomers and tetramers also observed. A systematic study of the supramolecular interactions present in these materials was executed by varying the bromine position on the benzoic acid groups along with substituents on the chelating N-donor. Assembly via halogen and hydrogen bonding interactions as well as π–π interactions, including four instances of uranyl oxo-functionalization via halogen bonding, was observed depending on the experimental conditions utilized.

Graphical abstract: Combining coordination and supramolecular chemistry to explore uranyl assembly in the solid state

Back to tab navigation

Supplementary files

Article information


Submitted
29 Oct 2014
Accepted
07 Dec 2014
First published
10 Dec 2014

Inorg. Chem. Front., 2015,2, 141-156
Article type
Research Article
Author version available

Combining coordination and supramolecular chemistry to explore uranyl assembly in the solid state

K. P. Carter and C. L. Cahill, Inorg. Chem. Front., 2015, 2, 141
DOI: 10.1039/C4QI00183D

Social activity

Search articles by author

Spotlight

Advertisements