Issue 37, 2015

Branched alkyl ester side chains rendering large polycyclic (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione (IBDF) based donor–acceptor polymers solution-processability for organic thin film transistors

Abstract

We report the development and use of a new type of branched alkyl ester side chain for donor–acceptor polymers. The synthesis of the branched alkyl ester side chain precursors is simple and the side chain's branching position and branch length can be adjusted conveniently by choosing the readily available starting materials. (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione (IBDF) based donor–acceptor polymers were previously found to have poor solubility in common organic solvents. Herein, we used this new type of branched alkyl ester side chain for the copolymers of IBDF and bithiophene and explored how the branch length would impact the microstructure and charge transport properties of these polymers. With an optimal branch length, the polymer demonstrated ambipolar charge transporting characteristics with a high electron mobility of up to 0.35 cm2 V−1 s−1 and a hole mobility of up to 0.20 cm2 V−1 s−1 in organic thin film transistors (OTFTs), which is comparable to the one with branched alkyl side chains.

Graphical abstract: Branched alkyl ester side chains rendering large polycyclic (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione (IBDF) based donor–acceptor polymers solution-processability for organic thin film transistors

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2015
Accepted
02 Aug 2015
First published
04 Aug 2015

Polym. Chem., 2015,6, 6689-6697

Author version available

Branched alkyl ester side chains rendering large polycyclic (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione (IBDF) based donor–acceptor polymers solution-processability for organic thin film transistors

Y. He, C. Guo, B. Sun, J. Quinn and Y. Li, Polym. Chem., 2015, 6, 6689 DOI: 10.1039/C5PY00782H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements