Issue 34, 2015

A rapid crosslinking injectable hydrogel for stem cell delivery, from multifunctional hyperbranched polymers via RAFT homopolymerization of PEGDA

Abstract

Stem cell therapies have attracted much attention for the last few decades in the field of regenerative medicine and tissue engineering. The 3-dimensional (3D) microenvironment surrounding the transplanted stem cells plays an essential role that influences the cell fate and behaviors. Thus advanced functional biomaterials and extracellular matrix (ECM) replacements with adjustable chemical, mechanical and bioactive properties are requisites in this field. In this study, PEG-based hyperbranched multifunctional homopolymers were developed via RAFT homopolymerization of the divinyl monomer of poly(ethylene glycol) diacrylate (PEGDA). Due to its high degree of multi-acrylate functionality, the hyperbranched polyPEGDA can rapidly crosslink with a thiolated hyaluronic acid under physiological conditions and form an injectable hydrogel for cell delivery. In addition, by simply varying the synthesis conditions such as the reaction time and the ratio of the monomer to the chain transfer agent (CTA), the polymer molecular weight, acrylate functionality degree and the cyclized/hyperbranched polymeric architecture can be finely controlled in a one-step reaction. The gelation speed and the mechanical properties of this hydrogel can be easily adjusted by altering the crosslinking conditions. Rat adipose-derived stem cells (rASCs) were embedded into the in situ crosslinked hydrogels, and their cellular behavior such as the morphology, viability, metabolic activity and proliferation were fully evaluated. The results suggested that the hydrogel maintained good cell viability and it can be easily modified with other bioactive signals, which provide this injectable hydrogel delivery system with good potential for polymeric biomaterials and tissue regeneration applications.

Graphical abstract: A rapid crosslinking injectable hydrogel for stem cell delivery, from multifunctional hyperbranched polymers via RAFT homopolymerization of PEGDA

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2015
Accepted
10 Jun 2015
First published
11 Jun 2015

Polym. Chem., 2015,6, 6182-6192

Author version available

A rapid crosslinking injectable hydrogel for stem cell delivery, from multifunctional hyperbranched polymers via RAFT homopolymerization of PEGDA

Y. Dong, Y. Qin, M. Dubaa, J. Killion, Y. Gao, T. Zhao, D. Zhou, D. Duscher, L. Geever, G. C. Gurtner and W. Wang, Polym. Chem., 2015, 6, 6182 DOI: 10.1039/C5PY00678C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements