Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

This study investigated the unexpected decomposition and associated intermediates of compound 1, a specific member of a drug discovery library based on a monosaccharide scaffold. LC/MS and NMR spectroscopic analyses indicated that, under acidic conditions, 1 can be converted into the 4-aminogalactoside 2, due to cleavage of the 4-aminobutanoyl side chain. The reaction occurs most likely through an initial intramolecular amino–amide interaction, followed by an N- to O-acyl transfer of the side chain from C-4 to the C-6 position to form an ester intermediate (5), detectable by NMR, and subsequent hydrolysis. Similar decomposition reactions could be induced in selected compounds with similar structures, containing a free hydroxyl group at C-6 and a 4-aminobutanoyl side chain at C-4 of an aminogalactoside. Furthermore, three model compounds were synthesized without a C-6 hydroxyl group and with different length aminoalkanoyl side chains at the C-4 position. The model compounds all decomposed under acidic conditions, but at different rates and much slower when compared with compound 1, suggesting that both the C-6 hydroxyl group and the length of the side chain have an influence on stability.

Graphical abstract: Investigations into the decomposition of aminoacyl-substituted monosaccharide scaffolds from a drug discovery library

Page: ^ Top