Issue 43, 2015

Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties

Abstract

Oleic acid-stabilized hexagonal NaYF4:Yb3+/Er3+ nanocrystals, emitting green and red luminescence, were prepared by the high-temperature co-precipitation of lanthanide chlorides. By varying the reaction time and the Ln3+/Na+ ratio, the nanocrystal size can be controlled within the range 16–270 nm. The maximum upconversion quantum yield is achieved under 970 nm excitation. The reverse microemulsion technique using hydrolysis and condensation of tetraethoxysilane is a suitable method to coat the nanocrystal surface with a silica shell to make the particles dispersible and colloidally stable in aqueous media. During the subsequent functionalization, (3-aminopropyl)trimethoxysilane introduced amino groups onto the silica to enable future bioconjugation with the target molecules. All specimens were characterized by TEM microscopy, electron and X-ray diffraction, ATR FT-IR spectroscopy, and upconversion luminescence. Finally, in vitro cytotoxicity and intracellular nanoparticle uptake (using confocal microscopy) were determined with human cervical carcinoma HeLa and mRoGFP HeLa cells, respectively. From the investigated particles, amino-functionalized NaYF4:Yb3+/Er3+ nanocrystals internalized into the cells most efficiently. The nanoparticles proved to be nontoxic at moderate concentrations, which is important when considering their prospective application in biolabeling and luminescence imaging of various cell types.

Graphical abstract: Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties

Article information

Article type
Paper
Submitted
17 Aug 2015
Accepted
21 Sep 2015
First published
25 Sep 2015

Nanoscale, 2015,7, 18096-18104

Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties

U. Kostiv, O. Janoušková, M. Šlouf, N. Kotov, H. Engstová, K. Smolková, P. Ježek and D. Horák, Nanoscale, 2015, 7, 18096 DOI: 10.1039/C5NR05572E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements