Issue 25, 2015

Functionalized ZnO@TiO2 nanorod array film loaded with ZnIn0.25Cu0.02S1.395 solid-solution: synthesis, characterization and enhanced visible light driven water splitting

Abstract

We have designed a novel semiconductor core/layer nanostructure of a uniform ZnO@TiO2 nanorod array modified with a ZnIn0.25Cu0.02S1.395 solid-solution on the surface via a facile hydrothermal synthesis. This novel nanostructure combines the merits of all components and meets the requirements of photovoltaic system application. An intimate PN heterojunction is formed from the ZnO@TiO2 nanorod and polymetallic sulphide solid-solution, which is remarkably beneficial for the effective visible light absorption and rapid charge carrier separation. The nanostructures exhibit higher photocurrent and incident photon to electron conversion efficiency (IPCE) under no bias potential versus the Ag/AgCl electrode. We also analyzed the interface and photoelectrochemical characteristics of the nanostructure and revealed the kinetic process of the electron and hole transmission. In addition, the photoanode test shows the hydrogen production capability of the nanostructures from solar water splitting. These results verified that the ZnO and TiO2 can be sensitized by the polymetallic sulfide for UV-Vis light driven energy conversion. Importantly, the approach we used to design the photoanode enables the development of micro-nano electronic devices with enhanced performance.

Graphical abstract: Functionalized ZnO@TiO2 nanorod array film loaded with ZnIn0.25Cu0.02S1.395 solid-solution: synthesis, characterization and enhanced visible light driven water splitting

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2015
Accepted
15 May 2015
First published
18 May 2015

Nanoscale, 2015,7, 11082-11092

Author version available

Functionalized ZnO@TiO2 nanorod array film loaded with ZnIn0.25Cu0.02S1.395 solid-solution: synthesis, characterization and enhanced visible light driven water splitting

R. Wang, X. Xu, Y. Zhang, Z. Chang, Z. Sun and W. Dong, Nanoscale, 2015, 7, 11082 DOI: 10.1039/C5NR02127H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements