Issue 17, 2015

Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia

Abstract

Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.

Graphical abstract: Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2015
Accepted
23 Mar 2015
First published
25 Mar 2015

Nanoscale, 2015,7, 7717-7725

Author version available

Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia

M. Campanini, R. Ciprian, E. Bedogni, A. Mega, V. Chiesi, F. Casoli, C. de Julián Fernández, E. Rotunno, F. Rossi, A. Secchi, F. Bigi, G. Salviati, C. Magén, V. Grillo and F. Albertini, Nanoscale, 2015, 7, 7717 DOI: 10.1039/C5NR00273G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements