Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 21, 2015

Towards parallel fabrication of single electron transistors using carbon nanotubes

Author affiliations

Abstract

Single electron transistors (SETs) are considered to be promising building blocks for post CMOS era electronic devices, however, a major bottleneck for practical realization of SET based devices is a lack of a parallel fabrication approach. Here, we have demonstrated a technique for the scalable fabrication of SETs using single-walled carbon nanotubes (SWNTs). The approach is based on the integration of solution processed individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit with a 100 nm channel length, where the metal–SWNT Schottky contact works as a tunnel barrier. Measurements carried out at a low temperature (4.2 K) show that the majority of the devices with a contact resistance (RT) > 100 kΩ display SET behavior. For the devices with 100 kΩ < RT < 1 MΩ, periodic, well-defined Coulomb diamonds with a charging energy of ∼14 meV, corresponding to the transport through a single quantum dot (QD) was observed. For devices with high RT (>1 MΩ) multiple QD behavior was observed. From the transport study of 50 SWNT devices, a total of 38 devices show SET behavior giving a yield of 76%. The results presented here are a significant step forward for the practical realization of SET based devices.

Graphical abstract: Towards parallel fabrication of single electron transistors using carbon nanotubes

Supplementary files

Article information


Submitted
22 Dec 2014
Accepted
21 Apr 2015
First published
27 Apr 2015

Nanoscale, 2015,7, 9786-9792
Article type
Paper

Towards parallel fabrication of single electron transistors using carbon nanotubes

M. R. Islam, D. Joung and S. I. Khondaker, Nanoscale, 2015, 7, 9786 DOI: 10.1039/C4NR07540D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements