Jump to main content
Jump to site search

Issue 17, 2015

Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery

Author affiliations

Abstract

A highly stable modular platform, based on the sequential covalent attachment of different functionalities to the surface of core–shell mesoporous silica nanoparticles (MSNs) for targeted drug delivery is presented. A reversible pH-responsive cap system based on covalently attached poly(2-vinylpyridine) (PVP) was developed as drug release mechanism. Our platform offers (i) tuneable interactions and release kinetics with the cargo drug in the mesopores based on chemically orthogonal core–shell design, (ii) an extremely robust and reversible closure and release mechanism based on endosomal acidification of the covalently attached PVP polymer block, (iii) high colloidal stability due to a covalently coupled PEG shell, and (iv) the ability to covalently attach a wide variety of dyes, targeting ligands and other functionalities at the outer periphery of the PEG shell. The functionality of the system was demonstrated in several cell studies, showing pH-triggered release in the endosome, light-triggered endosomal escape with an on-board photosensitizer, and efficient folic acid–based cell targeting.

Graphical abstract: Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery

Supplementary files

Article information


Submitted
08 Dec 2014
Accepted
29 Mar 2015
First published
13 Apr 2015

This article is Open Access

Nanoscale, 2015,7, 7953-7964
Article type
Paper

Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery

S. Niedermayer, V. Weiss, A. Herrmann, A. Schmidt, S. Datz, K. Müller, E. Wagner, T. Bein and C. Bräuchle, Nanoscale, 2015, 7, 7953 DOI: 10.1039/C4NR07245F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements