Jump to main content
Jump to site search

Issue 7, 2015
Previous Article Next Article

Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach

Author affiliations

Abstract

A “top-down” and scalable approach for processing carbon fiber cloth (CFC) into flexible and all-carbon electrodes with remarkable areal capacity and cyclic stability was developed. CFC is commercially available in large quantities but its use as an electrode material in supercapacitors is not satisfactory. The approach demonstrated in this work is based on the sequential treatment of CFC with KOH activation and high temperature annealing that can effectively improve its specific surface area to a remarkable 2780 m2 g−1 while at the same time achieving a good electrical conductivity of 320 S m−1 without sacrificing its intrinsic mechanical strength and flexibility. The processed CFC can be directly used as an electrode for supercapacitors without any binders, conductive additives and current collectors while avoiding elaborate electrode processing steps to deliver a specific capacitance of ∼0.5 F cm−2 and ∼197 F g−1 with remarkable rate performance and excellent cyclic stability. The properties of these processed CFCs are comparable or better than graphene and carbon nanotube based electrodes. We further demonstrate symmetric solid-state supercapacitors based on these processed CFCs with very good flexibility. This “top-down” and scalable approach can be readily applied to other types of commercially available carbon materials and therefore can have a substantial significance for high performance supercapacitor devices.

Graphical abstract: Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Nov 2014, accepted on 10 Jan 2015 and first published on 13 Jan 2015


Article type: Paper
DOI: 10.1039/C4NR06812B
Author version
available:
Download author version (PDF)
Citation: Nanoscale, 2015,7, 3285-3291
  •   Request permissions

    Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach

    T. Zhang, C. H. J. Kim, Y. Cheng, Y. Ma, H. Zhang and J. Liu, Nanoscale, 2015, 7, 3285
    DOI: 10.1039/C4NR06812B

Search articles by author

Spotlight

Advertisements