Issue 6, 2015

Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging

Abstract

The clustering of membrane receptors such as EGFR is critical for various biological processes, for example cell signaling and tumorigenesis. However, the mechanism involved remains poorly understood. Here, we used a super resolution imaging technique, which has shattered the longstanding resolution barrier of light diffraction, to investigate the distribution of membrane EGFR on apical or basal surfaces of COS-7 cells and on the surface of suspended COS-7 cells. Our data show that more and larger EGFR clusters are detected on the apical surface in comparison with those on the basal surface and this difference is not affected by the EGFR activation state, whereas suspended COS-7 cells exhibit a moderate clustering state and a homogeneous distribution pattern, indicating that the external environment surrounding the cell membrane is the decisive factor in the EGFR clustering pattern. A dual-color dSTORM image reveals the significant colocalization of EGFR and lipid rafts; interestingly MβCD treatment leads to a dramatic decrease of the amount and size of EGFR clusters on both apical and basal surfaces, highlighting a key role of lipid rafts in EGFR cluster formation. Altogether, our results illustrate the distribution pattern of EGFR in polarized cells and uncover the essential role of lipid rafts in EGFR cluster maintenance.

Graphical abstract: Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2014
Accepted
12 Dec 2014
First published
08 Jan 2015

Nanoscale, 2015,7, 2511-2519

Author version available

Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging

J. Gao, Y. Wang, M. Cai, Y. Pan, H. Xu, J. Jiang, H. Ji and H. Wang, Nanoscale, 2015, 7, 2511 DOI: 10.1039/C4NR04962D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements