Issue 8, 2015

Engineering of a peptide probe for β-amyloid aggregates

Abstract

Aggregation of β-amyloid (Aβ) is central to the pathogenesis of Alzheimer's disease (AD). Aβ aggregation produces amyloid assemblies, such as oligomers and fibrils. In contrast to non-toxic Aβ monomers, Aβ oligomers and fibrils can act directly as major toxic agents and indirectly as pools of the toxic entities, respectively. Thus, the detection of Aβ aggregates is of diagnostic interest and should benefit enhanced molecular understanding of AD. Among many molecular platforms, peptide-based ligands hold promise as Aβ probes due to their relative simplicity, ease of optimization and facile conjugation to other molecular contexts. In this regard, Aβ hydrophobic segments (critical in Aβ self-assembly) or variants thereof can serve as lead molecules for Aβ probe development. Unfortunately, the resulting peptides are either highly self-aggregation-prone or their probe potential has not been thoroughly examined. In the present study, we characterized a novel peptide ligand, KLVFWAK, which was created by simple point mutations of an Aβ hydrophobic segment (16KLVFFAE22). We found that KLVFWAK displayed low self-aggregation propensity and was preferentially bound to Aβ oligomers and fibrils relative to Aβ monomers. Interestingly, binding of KLVFWAK to Aβ aggregates occurred at a non-homologous Aβ segment (e.g., Aβ C-terminal domain) rather than the homologous 16KLVFFAE22. We also show that detection of Aβ aggregates during incubation of fresh Aβ was possible with KLVFWAK, further supporting KLVFWAK's high probe potential for Aβ aggregates. In short, this study presents creation of a non-self-aggregating peptide ligand for Aβ aggregates through simple point mutation of an Aβ-derived segment.

Graphical abstract: Engineering of a peptide probe for β-amyloid aggregates

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2015
Accepted
04 Jun 2015
First published
04 Jun 2015

Mol. BioSyst., 2015,11, 2281-2289

Author version available

Engineering of a peptide probe for β-amyloid aggregates

E. Aoraha, J. Candreva and J. R. Kim, Mol. BioSyst., 2015, 11, 2281 DOI: 10.1039/C5MB00280J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements