Jump to main content
Jump to site search

Issue 18, 2015
Previous Article Next Article

A cost-effective fluorescence mini-microscope for biomedical applications

Author affiliations

Abstract

We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8–60×, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8×). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.

Graphical abstract: A cost-effective fluorescence mini-microscope for biomedical applications

Back to tab navigation

Supplementary files

Article information


Submitted
16 Jun 2015
Accepted
03 Aug 2015
First published
03 Aug 2015

Lab Chip, 2015,15, 3661-3669
Article type
Paper

A cost-effective fluorescence mini-microscope for biomedical applications

Y. S. Zhang, J. Ribas, A. Nadhman, J. Aleman, Š. Selimović, S. C. Lesher-Perez, T. Wang, V. Manoharan, S. Shin, A. Damilano, N. Annabi, M. R. Dokmeci, S. Takayama and A. Khademhosseini, Lab Chip, 2015, 15, 3661
DOI: 10.1039/C5LC00666J

Social activity

Search articles by author

Spotlight

Advertisements