Jump to main content
Jump to site search

Issue 2, 2015
Previous Article Next Article

A route to convert CO2: synthesis of 3,4,5-trisubstituted oxazolones

Author affiliations

Abstract

Production of value-added chemicals using carbon dioxide (CO2) as a feedstock is favorable to the sustainable development of the chemical industry. In this work, we have discovered for the first time that CO2 can react with propargylic amines to produce 3,4,5-trisubstituted oxazolones, a class of very useful chemicals. It was found that the ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) can catalyze the reactions efficiently at atmospheric pressure under metal-free conditions. It was also found that [Bmim][OAc] and IL 1-butyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([Bmim][Tf2N]) have an excellent synergistic effect for promoting the reactions. The [Bmim][OAc]/[Bmim][Tf2N] catalytic system can be reused at least five times without loss in catalytic activity and selectivity. The reaction mechanism was proposed on the basis of density functional theory (DFT) calculation and the experimental results.

Graphical abstract: A route to convert CO2: synthesis of 3,4,5-trisubstituted oxazolones

Back to tab navigation

Supplementary files

Article information


Submitted
20 Oct 2014
Accepted
18 Nov 2014
First published
18 Nov 2014

Green Chem., 2015,17, 1219-1225
Article type
Paper

A route to convert CO2: synthesis of 3,4,5-trisubstituted oxazolones

J. Hu, J. Ma, Z. Zhang, Q. Zhu, H. Zhou, W. Lu and B. Han, Green Chem., 2015, 17, 1219
DOI: 10.1039/C4GC02033B

Social activity

Search articles by author

Spotlight

Advertisements