Near-field Raman spectroscopy of nanocarbon materials
Abstract
Nanocarbon materials, including sp2 hybridized two-dimensional graphene and one-dimensional carbon nanotubes, and sp1 hybridized one-dimensional carbyne, are being considered for the next generation of integrated optoelectronic devices. The strong electron–phonon coupling present in these nanocarbon materials makes Raman spectroscopy an ideal tool to study and characterize the material and device properties. Near-field Raman spectroscopy combines non-destructive chemical, electrical, and structural specificity with nanoscale spatial resolution, making it an ideal tool for studying nanocarbon systems. Here we use near-field Raman spectroscopy to study strain, defects, and doping in different nanocarbon systems.
- This article is part of the themed collection: Single-Molecule Microscopy and Spectroscopy