Volume 180, 2015

A mechanistic model for oxide growth and dissolution during corrosion of Cr-containing alloys

Abstract

We have developed a corrosion model that can predict metal oxide growth and dissolution rates as a function of time for a range of solution conditions. Our model considers electrochemical reactions at the metal/oxide and oxide/solution interfaces, and the metal cation flux from the metal to the solution phase through a growing oxide layer, and formulates the key processes using classical chemical reaction rate or flux equations. The model imposes mass and charge balance and hence, is labeled as the Mass Charge Balance (MCB) model. Mass and charge balance dictate that at any given time the oxidation (or metal cation) flux must be equal to the sum of the oxide growth flux and the dissolution flux. For each redox reaction leading to the formation of a specific oxide, the metal oxidation flux is formulated using a modified Butler–Volmer equation with an oxide-thickness-dependent effective overpotential. The oxide growth and dissolution fluxes have a first-order dependence on the metal cation flux. The rate constant for oxide formation also follows an Arrhenius dependence on the potential drop across the oxide layer and hence decreases exponentially with oxide thickness. This model is able to predict the time-dependent potentiostatic corrosion behaviour of both pure iron, and Co–Cr and Fe–Ni–Cr alloys.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2014
Accepted
16 Feb 2015
First published
17 Feb 2015

Faraday Discuss., 2015,180, 113-135

Author version available

A mechanistic model for oxide growth and dissolution during corrosion of Cr-containing alloys

M. Momeni and J. C. Wren, Faraday Discuss., 2015, 180, 113 DOI: 10.1039/C4FD00244J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements