Jump to main content
Jump to site search

Issue 11, 2015
Previous Article Next Article

A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films

Author affiliations

Abstract

A monolithically integrated device consisting of a tandem-junction GaAs/InGaP photoanode coated by an amorphous TiO2 stabilization layer, in conjunction with Ni-based, earth-abundant active electrocatalysts for the hydrogen-evolution and oxygen-evolution reactions, was used to effect unassisted, solar-driven water splitting in 1.0 M KOH(aq). When connected to a Ni–Mo-coated counterelectrode in a two-electrode cell configuration, the TiO2-protected III–V tandem device exhibited a solar-to-hydrogen conversion efficiency, ηSTH, of 10.5% under 1 sun illumination, with stable performance for >40 h of continuous operation at an efficiency of ηSTH > 10%. The protected tandem device also formed the basis for a monolithically integrated, intrinsically safe solar-hydrogen prototype system (1 cm2) driven by a NiMo/GaAs/InGaP/TiO2/Ni structure. The intrinsically safe system exhibited a hydrogen production rate of 0.81 μL s−1 and a solar-to-hydrogen conversion efficiency of 8.6% under 1 sun illumination in 1.0 M KOH(aq), with minimal product gas crossover while allowing for beneficial collection of separate streams of H2(g) and O2(g).

Graphical abstract: A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films

Back to tab navigation

Supplementary files

Article information


Submitted
09 Jun 2015
Accepted
17 Aug 2015
First published
18 Aug 2015

Energy Environ. Sci., 2015,8, 3166-3172
Article type
Communication
Author version available

A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films

E. Verlage, S. Hu, R. Liu, R. J. R. Jones, K. Sun, C. Xiang, N. S. Lewis and H. A. Atwater, Energy Environ. Sci., 2015, 8, 3166 DOI: 10.1039/C5EE01786F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements