Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 27, 2015
Previous Article Next Article

P,O-Phosphinophenolate zinc(ii) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate

Author affiliations

Abstract

The P,O-type phosphinophenol proligands (1·H, 2-PPh2-4-Me-6-Me-C6H2OH; 2·H, 2-PPh2-4-Me-6-tBu-C6H2OH) readily react with one equiv. of ZnEt2 to afford in high yields the corresponding Zn(II)-ethyl dimers of the type [(κ2-P,O)Zn-Et]2 (3 and 4) with two μ-OPh bridging oxygens connecting the two Zn(II) centers, as determined by X-ray diffraction (XRD) studies in the case of 3. Based on diffusion-ordered NMR spectroscopy (DOSY), both species 3 and 4 retain their dimeric structures in solution. The alcoholysis reaction of Zn(II) alkyls 3 and 4 with BnOH led to the high yield formation of the corresponding Zn(II) benzyloxide species [(κ2-P,O)Zn-OBn]2 (5 and 6), isolated in a pure form as colorless solids. The centrosymmetric and dimeric nature of Zn(II) alkoxides 5 and 6 in solution was deduced from DOSY NMR experiments and multinuclear NMR data. Though the heteroleptic species 5 is stable in solution, its analogue 6 is instable in CH2Cl2 solution at room temperature to slowly decompose to the corresponding homoleptic species 8via the transient formation of (κ2-P,O)2Zn2(μ-OBn)(μ–κ11-P,O) (6′). Crystallization of compound 6 led to crystals of 6′, as established by XRD analysis. The reaction of ZnEt2 with two equiv. of 1·H and 2·H allowed access to the corresponding homoleptic species of the type [Zn(P,O)2] (7 and 8). All gathered data are consistent with compound 7 being a dinuclear species in the solid state and in solution. Data for species 8, which bears a sterically demanding P,O-ligand, are consistent with a mononuclear species in solution. The Zn(II) alkoxide species 5 and the [Zn(P,O)2]-type compounds 7 and 8 were evaluated as initiators of the ring-opening polymerization (ROP) of lactide (LA), ε-caprolactone (ε-CL) and trimethylene carbonate (TMC). Species 5 is a well-behaved ROP initiator for the homo-, co- and ter-polymerization of all three monomers with the production of narrow disperse materials under living and immortal conditions. Though species 7 and 8 are ROP inactive on their own, they readily polymerize LA in the presence of a nucleophile such as BnOH to produce narrow disperse PLA, presumably via an activated-monomer ROP mechanism.

Graphical abstract: P,O-Phosphinophenolate zinc(ii) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate

Back to tab navigation

Supplementary files

Article information


Submitted
01 Feb 2015
Accepted
25 Mar 2015
First published
25 Mar 2015

This article is Open Access

Dalton Trans., 2015,44, 12376-12387
Article type
Paper
Author version available

P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate

C. Fliedel, V. Rosa, F. M. Alves, Ana. M. Martins, T. Avilés and S. Dagorne, Dalton Trans., 2015, 44, 12376
DOI: 10.1039/C5DT00458F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements