Issue 17, 2015

Two alternative approaches to access mixed hydride-amido zinc complexes: synthetic, structural and solution implications

Abstract

Using bis(amide) Zn(HMDS)2 (HMDS = 1,1,1,3,3,3-hexamethyldisilazide) as a precursor, this study explores the synthesis of N-heterocyclic carbene stabilized mixed amido-hydride zinc complexes using two alternative hydride sources, namely dimethylamine borane (DMAB) and phenylsilane PhSiH3. Hydride-rich zinc cluster Zn4(HMDS)2H6·2IPr (1) (IPr = 1,3-bis(2,6-di-isopropylphenyl)imidazol-2-ylidene), which can be envisaged as a co-complex of IPr·ZnH2 and (HMDS)ZnH, is obtained when DMAB is employed, with the concomitant formation of heteroleptic bis(amido)borane [HB(NMe2)(HMDS)] and H2 evolution. NMR studies in d8-THF show that although the bulky carbene IPr does not bind to the zinc bis(amide), its presence in the reaction media is required in order to stabilise 1. Reactions using the slightly less sterically demanding NHC IXy (IXy = 1,3-bis-(2,6-dimethylphenyl)imidazol-2-ylidene) led to the isolation and structural elucidation of the carbene adduct Zn(HMDS)2·IXy (2). Contrastingly, mixtures of equimolar amounts of PhSiH3 and the zinc bis(amide) (60 °C, 3 h, hexane) afforded monomeric heteroleptic hydride (HMDS)ZnH·IPr (3). NMR studies, including DOSY experiments, revealed that while the integrity of 3 is retained in polar d8-THF solutions, in lower polarity C6D6 it displays a much more complex solution behaviour, being in equilibrium with the homoleptic species ZnH2·IPr, Zn(HMDS)2 and IPr.

Graphical abstract: Two alternative approaches to access mixed hydride-amido zinc complexes: synthetic, structural and solution implications

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2015
Accepted
27 Mar 2015
First published
27 Mar 2015

Dalton Trans., 2015,44, 8169-8177

Author version available

Two alternative approaches to access mixed hydride-amido zinc complexes: synthetic, structural and solution implications

A. J. Roberts, W. Clegg, A. R. Kennedy, M. R. Probert, S. D. Robertson and E. Hevia, Dalton Trans., 2015, 44, 8169 DOI: 10.1039/C5DT00312A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements