Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In the presence of copper supported on manganese oxide-based octahedral molecular sieves OMS-2 (CuOx/OMS-2), the heterogeneously catalytic, aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines from acetophenones, 2-aminopyridines and I2via tandem cyclization/iodination in a one-pot manner is achieved. As a heterogeneous catalyst, OMS-2 acts not only as a support for catalytic Cu species but also as an electron-transfer mediator (ETM), which combines with Cu to generate a low-energy pathway for rapid electron transfer. In this way, the biomimetic, catalytic oxidation could directly employ air as a green terminal oxidant under mild conditions, and provide corresponding products with broad substrates in moderate to excellent yields using very low catalyst loading (0.2 mol% Cu). In this process, I2 not only plays the role of catalyst for the initial cyclization, with assistance from CuOx/OMS-2, but also acts as a reactant for the next electrophilic oxidative iodination, which makes the reaction highly atom economic. Besides, the late-stage functionalization of the I-substituted imidazo[1,2-a]pyridines is also demonstrated by various coupling reactions, which show its potential applications in synthetic and pharmaceutical chemistry. Moreover, the catalyst is truly heterogeneous and reusable.

Graphical abstract: Heterogeneous biomimetic aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines via CuOx/OMS-2-catalyzed tandem cyclization/iodination and their late-stage functionalization

Page: ^ Top