Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 16, 2015
Previous Article Next Article

A sustainable future for photonic colloidal nanocrystals

Author affiliations

Abstract

Colloidal nanocrystals – produced in a growing variety of shapes, sizes and compositions – are rapidly developing into a new generation of photonic materials, spanning light emitting as well as energy harvesting applications. Precise tailoring of their optoelectronic properties enables them to satisfy disparate application-specific requirements. However, the presence of toxic heavy metals such as cadmium and lead in some of the most mature nanocrystals is a serious drawback which may ultimately preclude their use in consumer applications. Although the pursuit of non-toxic alternatives has occurred in parallel to the well-developed Cd- and Pb-based nanocrystals, synthetic challenges have, until recently, curbed progress. In this review, we highlight recent advances in the development of heavy-metal-free nanocrystals within the context of specific photonic applications. We also describe strategies to transfer some of the advantageous nanocrystal features such as shape control to non-toxic materials. Finally, we present recent developments that have the potential to make substantial impacts on the quest to attain a balance between performance and sustainability in photonics.

Graphical abstract: A sustainable future for photonic colloidal nanocrystals

Back to tab navigation

Article information


Submitted
05 Apr 2015
First published
18 Jun 2015

This article is Open Access

Chem. Soc. Rev., 2015,44, 5897-5914
Article type
Review Article
Author version available

A sustainable future for photonic colloidal nanocrystals

J. Q. Grim, L. Manna and I. Moreels, Chem. Soc. Rev., 2015, 44, 5897
DOI: 10.1039/C5CS00285K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements