Issue 10, 2015

Controlled decoration of the surface with macromolecules: polymerization on a self-assembled monolayer (SAM)

Abstract

Polymer functionalized surfaces are important components of various sensors, solar cells and molecular electronic devices. In this context, the use of self-assembled monolayer (SAM) formation and subsequent reactions on the surface have attracted a lot of interest due to its stability, reliability and excellent control over orientation of functional groups. The chemical reactions to be employed on a SAM must ensure an effective functional group conversion while the reaction conditions must be mild enough to retain the structural integrity. This synthetic constraint has no universal solution; specific strategies such as “graft from”, “graft to”, “graft through” or “direct” immobilization approaches are employed depending on the nature of the substrate, polymer and its area of applications. We have reviewed current developments in the methodology of immobilization of a polymer in the first part of the article. Special emphasis has been given to the merits and demerits of certain methods. Another issue concerns the utility – demonstrated or perceived – of conjugated or non-conjugated macromolecules anchored on a functionally decorated SAM in the areas of material science and biotechnology. In the last part of the review article, we looked at the collective research efforts towards SAM-based polymer devices and identified major pointers of progress (236 references).

Graphical abstract: Controlled decoration of the surface with macromolecules: polymerization on a self-assembled monolayer (SAM)

Supplementary files

Article information

Article type
Review Article
Submitted
08 Nov 2014
First published
02 Apr 2015

Chem. Soc. Rev., 2015,44, 3212-3243

Author version available

Controlled decoration of the surface with macromolecules: polymerization on a self-assembled monolayer (SAM)

P. Murugan, M. Krishnamurthy, S. N. Jaisankar, D. Samanta and A. B. Mandal, Chem. Soc. Rev., 2015, 44, 3212 DOI: 10.1039/C4CS00378K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements