Issue 44, 2015

Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes

Abstract

The electrochemical activity of graphene is of fundamental importance to applications from energy storage to sensing, but has proved difficult to unambiguously determine due to the challenges innate to fabricating well defined graphene electrodes free from contamination. Here, we report the electrochemical activity of chemical vapour deposition (CVD) graphene grown on copper foil without further treatment, through appropriate choice of electrolyte. Fast electron transfer kinetics are observed for both inner and outer sphere redox couples with fully covered graphene on copper electrodes (k° = 0.014 ± 0.001 cm s−1 or k° = 0.012 ± 0.001 cm s−1 for potassium ferrocyanide(II) and hexaamineruthenium(III) chloride, respectively). Unlike highly oriented pyrolytic graphite electrodes, the electrochemical response of the graphene on copper electrodes is stable, with no apparent electrode fouling even with inner sphere redox couples, and reproducible independent of the time between growth and measurement. Comparison between fully covered electrodes, and partial coverage of graphene with varying graphene grain sizes (from roughly 50 μm to <10 μm) shows that in this instance the basal plane of graphene is electrochemically active. These CVD grown graphene on copper electrodes are quick, cheap and reproducible to make and hence provide a convenient platform for further investigation of graphene electrochemistry and the effect of covalent and non-covalent modification.

Graphical abstract: Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2015
Accepted
16 Sep 2015
First published
17 Sep 2015

Phys. Chem. Chem. Phys., 2015,17, 29628-29636

Author version available

Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes

C. Bosch-Navarro, Z. P. L. Laker, J. P. Rourke and N. R. Wilson, Phys. Chem. Chem. Phys., 2015, 17, 29628 DOI: 10.1039/C5CP04070A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements