Issue 38, 2015

Mechanistic details of energy transfer and soft landing in ala2-H+ collisions with a F-SAM surface

Abstract

Previous chemical dynamics simulations (Phys. Chem. Chem. Phys., 2014, 16, 23769–23778) were analyzed to delineate atomistic details for collision of N-protonated dialanine (ala2-H+) with a C8 perfluorinated self-assembled monolayer (F-SAM) surface. Initial collision energies Ei of 5–70 eV and incident angles θi of 0° and 45°, with the surface normal, were considered. Four trajectory types were identified: (1) direct scattering; (2) temporary sticking/physisorption on top of the surface; (3) temporary penetration of the surface with additional physisorption on the surface; and (4) trapping on/in the surface, by physisorption or surface penetration, when the trajectory is terminated. Direct scattering increases from 12 to 100% as Ei is increased from 5 to 70 eV. For the direct scattering at 70 eV, at least one ala2-H+ heavy atom penetrated the surface for all of the trajectories. For ∼33% of the trajectories all eleven of the ala2-H+ heavy atoms penetrated the F-SAM at the time of deepest penetration. The importance of trapping decreased with increase in Ei, decreasing from 84 to 0% with Ei increase from 5 to 70 eV at θi = 0°. Somewhat surprisingly, the collisional energy transfers to the F-SAM surface and ala2-H+ are overall insensitive to the trajectory type. The energy transfer to ala2-H+ is primarily to vibration, with the transfer to rotation ∼10% or less. Adsorption and then trapping of ala2-H+ is primarily a multi-step process, and the following five trapping mechanisms were identified: (i) physisorption–penetration–physisorption (phys–pen–phys); (ii) penetration–physisorption–penetration (pen–phys–pen); (iii) penetration–physisorption (pen–phys); (iv) physisorption–penetration (phys–pen); and (v) only physisorption (phys). For Ei = 5 eV, the pen–phys–pen, pen–phys, phys–pen, and phys trapping mechanisms have similar probabilities. For 13.5 eV, the phys–pen mechanism, important at 5 eV, is unimportant. The radius of gyration of ala2-H+ was calculated once it is trapped on/in the F-SAM surface and trapping decreases the ion's compactness, in part by breaking hydrogen bonds. The ala2-H+ + F-SAM simulations are compared with the penetration and trapping dynamics found in previous simulations of projectile + organic surface collisions.

Graphical abstract: Mechanistic details of energy transfer and soft landing in ala2-H+ collisions with a F-SAM surface

Article information

Article type
Paper
Submitted
03 Jun 2015
Accepted
17 Jul 2015
First published
17 Jul 2015

Phys. Chem. Chem. Phys., 2015,17, 24576-24586

Author version available

Mechanistic details of energy transfer and soft landing in ala2-H+ collisions with a F-SAM surface

S. Pratihar, N. Kim, S. C. Kohale and W. L. Hase, Phys. Chem. Chem. Phys., 2015, 17, 24576 DOI: 10.1039/C5CP03214H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements