Solvent-induced variable conformation of bis(terpyridine) derivatives during supramolecular self-assembly at liquid/HOPG interfaces†
Abstract
Variable supramolecular structures constructed by bis-(2,2′:6′,2′′-terpyridine)-4′-oxyhexadecane (BT-O-C16) on a highly oriented pyrolytic graphite (HOPG) surface were investigated by scanning tunneling microscopy (STM). Seven different solvents (1-phenyloctane, n-tetradecane, n-dodecane, n-decane, n-octane, 1-heptanoic acid, and 1-octanoic acid) were utilized to affect the self-assembling structures of BT-O-C16 at liquid/HOPG interfaces. High-resolution STM analyses revealed that various nanostructures were formed by the change of molecular conformation, which are actually driven by the cooperative interaction effect under different environments. Therefore, the solvent-induced cooperative influence on the molecular self-assembly is important for constructing supramolecular nanostructures.