Issue 15, 2015

Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study

Abstract

We present a comparative study on the static and dynamical properties of bare Ti3C2 and T-terminated Ti3C2T2 (T = O, F, OH) monosheets using density functional theory calculations. First, the crystal structures are optimized to be of trigonal configurations (P[3 with combining macron]m1), which are thermodynamically and dynamically stable. It is demonstrated that the terminations modulate the crystal structures through valence electron density redistribution of the atoms, particularly surface Ti (Ti2) in the monosheets. Second, lattice dynamical properties including phonon dispersion and partial density of states (PDOS) are investigated. Phonon PDOS analysis shows a clear collaborative feature in the vibrations, reflecting the covalent nature of corresponding bonds in the monosheets. In the bare Ti3C2 monosheet, there is a phonon band gap between 400 and 500 cm−1, while it disappears in Ti3C2O2 and Ti3C2(OH)2 as the vibrations associated with the terminal atoms (O and OH) bridge the gap. Third, both Raman (Eg and A1g) and infrared-active (Eu and A2u) vibrational modes are predicted and conclusively assigned. A comparative study indicates that the terminal atoms remarkably influence the vibrational frequencies. Generally, the terminal atoms weaken the vibrations in which surface Ti atoms are involved while strengthening the out-of-plane vibration of C atoms. Temperature-dependent micro Raman measurements agree with the theoretical prediction if the complexity in the experimentally obtained lamellae for the Raman study is taken into account.

Graphical abstract: Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2014
Accepted
02 Mar 2015
First published
06 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 9997-10003

Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study

T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu and X. Wang, Phys. Chem. Chem. Phys., 2015, 17, 9997 DOI: 10.1039/C4CP05666C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements