Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Fluorescence correlation spectroscopy (FCS) is a standard tool for studying diffusion of molecules in solution, but is limited to low analyte concentrations, in the range between 10 pM and 1 nM. Such concentration limitations can be overcome by using a plasmonic nanoantenna which confines the electric field of excitation light into a tiny volume near its surface and thereby reduces the effective excitation volume by several orders of magnitude. Here we demonstrate successful FCS measurements on a 1 μM solution of crystal violet (CV) dye in glycerol using a gold nanorod antenna. Our correlation analysis yields two components: (i) a slow component with correlation time of about 100 ms, which is attributed to sticking and bleaching of the dye, and (ii) a fast component of about 1 ms, which could arise from dye diffusion through the near-field of the nanorod and/or from blinking due to intersystem crossing or photochemistry.

Graphical abstract: Enhanced-fluorescence correlation spectroscopy at micro-molar dye concentration around a single gold nanorod

Page: ^ Top