Overcoming tumor resistance to cisplatin through micelle-mediated combination chemotherapy†
Abstract
The main obstacles to cancer therapy are the inability to target cancer cells and the acquired drug resistance after a period of chemotherapy. Reduced drug uptake and DNA repair are the two main mechanisms involved in cisplatin resistance. In the present investigation, canthaplatin, a Pt(IV) pro-drug of cisplatin and a protein phosphatase 2A (PP2A) inhibitor (4-(3-carboxy-7-oxa-bicyclo[2.2.1]heptane-2-carbonyl)piperazine-1-carboxylic acid tert-butyl ester), was designed and delivered using PEG-b-PLGA micelles for combination chemotherapy. Polymer/canthaplatin micelles facilitated the delivery of the drug into cancer cells through endocytosis and diminished DNA repair by PP2A inhibition, resulting in enhanced anti-tumor efficiency and excellent reversal ability of tumor resistance to cisplatin both in vitro and in vivo. Additionally, the polymer/canthaplatin micelles could prolong drug residence in the blood and decrease the side effects when compared to cisplatin.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        